Welcome to my blog :)

rss

jueves, 29 de abril de 2010

TECNOLOGIAS Y SISTEMAS DE COMUNICACION Y ENRUTAMIENTO

CONCENTRADORES

Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto en el que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos. También se encarga de enviar una señal de choque a todos los puertos si detecta una colisión. Son la base para las redes de topología tipo estrella.




Existen 3 clases:

• Pasivo: No necesita energía eléctrica. Se dedica a la interconexion.
• Activo: Necesita alimentación. Además de concentrar el cableado, regeneran la señal, eliminan el ruido y amplifican la señal
• Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.

Dentro del modelo OSI el concentrador opera a nivel de la capa física, al igual que los repetidores, y puede ser implementado utilizando únicamente tecnología analógica. Simplemente une conexiones y no altera las tramas que le llegan.





REPETIDORES

Un repetidor es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable.





El término repetidor se creó con la telegrafía y se refería a un dispositivo electromecánico utilizado para regenerar las señales telegráficas. El uso del término ha continuado en telefonía y transmisión de datos.





HUB
En informática un hub o concentrador es un equipo de redes que permite conectar entre sí otros equipos y retransmite los paquetes que recibe desde cualquiera de ellos a todos los demás. Los hubs han dejado de ser utilizados, debido al gran nivel de colisiones y tráfico de red que propician.






SWITCH

Un conmutador o switch es un dispositivo digital de lógica de interconexión de redes de computadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes (bridges), pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.

MEDIOS DE TRANSMISION FISICA

CABLE COAXIAL
El cable coaxial contiene un conductor de cobre en su interior. Este va envuelto en un aislante para separarlo de un apantallado metálico con forma de rejilla que aísla el cable de posibles interferencias externas.


Aunque la instalación del cable coaxial es más complicada que la del UTP, este tiene un alto grado de resistencia a las interferencias. Por otra parte también es posible conectar distancias mayores que con los cables de par trenzado. Existen dos tipos de cable coaxial, el fino y el grueso conocidos como thin coaxial y thick coaxial.




CABLE PAR TRENZADO

El cable de par trenzado es una forma de conexión en la que dos aisladores son entrelazados para tener menores interferencias y aumentar la potencia y la diafonía de los cables adyacentes.



El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, la cual determina el acoplamiento eléctrico en la señal, se ve aumentada.

En la operación de balanceado de pares, los dos cables suelen llevar señales paralelas y adyacentes (modo diferencial), las cuales son combinadas mediante sustracción en el destino. El ruido de los dos cables se aumenta mutuamente en esta sustracción debido a que ambos cables están expuestos a EMI similares.


FIBRA OPTICA

El cable de fibra óptica consiste en un centro de cristal rodeado de varias capas de material protector.
Lo que se transmite no son señales eléctricas sino luz con lo que se elimina la problemática de las interferencias. Esto lo hace ideal para entornos en los que haya gran cantidad de interferencias eléctricas.


Con un cable de fibra óptica se pueden transmitir señales a distancias mucho mayores que con cables coaxiales o de par trenzado. Además, la cantidad de información capaz de transmitir es mayor por lo que es ideal para redes a través de las cuales se desee llevar a cabo videoconferencia o servicios interactivos. El coste es similar al cable coaxial pero las dificultades de instalación y modificación son mayores. En algunas ocasiones escucharemos 10BaseF como referencia a este tipo de cableado.

miércoles, 28 de abril de 2010

TIPOS DE ADAPTADORES DE ADMINISTRACION

Hay tres tipos de adaptadores de red que se utilizan en las redes locales: Ethemet, Token Ring y ARCnet.





Ethemet suele utilizarse en redes peer-to-peer y cliente-servidor razonablemente grandes, no es mucho más caro que ARCnet y en la mayoría de las situaciones es el doble de rápido.

Las tarjetas de tipo Token Ring son cuatro veces más caras que las Ethemet y resultan 1.5 veces más rápidas.
Los otros beneficios de Token Ring son una mayor fiabilidad que Ethernet ,que pueden proporcionar un diagnostico del estado de la red y que cuentan con capacidades de administraci6n que son muy valiosas en las grandes redes (para comunicarse el Pc de arranque del IBM S/390 con el propio IBM usa una Token Ring ).


ARCnet es usado habitualmente en pequeñas redes peer-to-peer y están sufriendo la competencia de las tarjetas tipo Ethemet. Las tarjetas Token Ring se utilizan en redes más grandes de tipo cliente-servidor, cuyo funcionamiento debe ser absolutamente seguro.

sábado, 17 de abril de 2010

PROPONER PROTOCOLOS DE COMUNICACION

En informática, un protocolo es un conjunto de reglas usadas por computadoras para comunicarse unas con otras a través de una red. Un protocolo es una convención o estándar que controla o permite la conexión, comunicación, y transferencia de datos entre dos puntos finales. En su forma más simple, un protocolo puede ser definido como las reglas que dominan la sintaxis, semántica y sincronización de la comunicación. Los protocolos pueden ser implementados por hardware, software, o una combinación de ambos. A su más bajo nivel, un protocolo define el comportamiento de una conexión de hardware.


PROPIEDADES TIPICAS

Si bien los protocolos pueden variar mucho en propósito y sofisticación, la mayoría especifica una o más de las siguientes propiedades:

*Detección de la conexión física subyacente (con cable o inalámbrica), o la existencia de otro punto final o nodo.
*Handshaking.
*Negociación de varias características de la conexión.
*Cómo iniciar y finalizar un mensaje.
*Procedimientos en el formateo de un mensaje.
*Qué hacer con mensajes corruptos o formateados incorrectamente (corrección de errores).
*Cómo detectar una pérdida inesperada de la conexión, y qué hacer entonces.
*Terminación de la sesión y/o conexión.









NIVELES DE ABSTRACCION

En el campo de las redes informáticas, los protocolos se pueden dividir en varias categorías, una de las clasificaciones más estudiadas es la OSI.
Según la clasificación OSI, la comunicación de varios dispositivos ETD se puede estudiar dividiéndola en 7 niveles, que son expuestos desde su nivel más alto hasta el más bajo:




A su vez, esos 7 niveles se pueden subdividir en dos categorías, las capas superiores y las capas inferiores. Las 4 capas superiores trabajan con problemas particulares a las aplicaciones, y las 3 capas inferiores se encargan de los problemas pertinentes al transporte de los datos.

Otra clasificación, más práctica y la apropiada para TCP/IP, podría ser esta:

Nivel
Capa de aplicación
Capa de transporte
Capa de red
Capa de enlace de datos
Capa física




Los protocolos de cada capa tienen una interfaz bien definida. Una capa generalmente se comunica con la capa inmediata inferior, la inmediata superior, y la capa del mismo nivel en otros computadores de la red. Esta división de los protocolos ofrece abstracción en la comunicación.

Una aplicación (capa nivel 7) por ejemplo, solo necesita conocer cómo comunicarse con la capa 6 que le sigue, y con otra aplicación en otro computador (capa 7). No necesita conocer nada entre las capas de la 1 y la 5. Así, un navegador web (HTTP, capa 7) puede utilizar una conexión Ethernet o PPP (capa 2) para acceder a la Internet, sin que sea necesario cualquier tratamiento para los protocolos de este nivel más bajo. De la misma forma, un router sólo necesita de las informaciones del nivel de red para enrutar paquetes, sin que importe si los datos en tránsito pertenecen a una imagen para un navegador web, un archivo transferido vía FTP o un mensaje de correo electrónico.


jueves, 15 de abril de 2010

EXAMINAR NUEVAS TECNOLOGIAS (INALAMBRICAS, TELEFONICAS, PLC,ETC)

RED INALAMBRICA:

Las redes inalámbricas se han desarrollado muy rápidamente al calor de estas nuevas necesidades y hoy son muchos los dispositivos que pueden conectarse mediante estos sistemas. Montar una red inalámbrica en casa es sencillo, y son realmente útiles cuando se dispone de varios ordenadores o cuando el PC de casa es portátil y no se conecta siempre desde el mismo lugar, ofreciendo muchas posibilidades de ocio y trabajo.

RED TELEFÓNICA:
La Red Telefónica Conmutada (RTC; también llamada Red Telefónica Básica o RTB) es una red de comunicación diseñada primordialmente para la transmisión de voz, aunque pueda también transportar datos, por ejemplo en el caso del fax o de la conexión a Internet a través de un módem acústico.
Se trata de una red en la que los terminales telefónicos (teléfonos) se comunican con una central de conmutación a través de un solo canal compartido por la señal del micrófono y del auricular. La voz va en banda base, es decir sin modulación (la señal producida por el micrófono se pone directamente en el cable).




RED PLC:

Las redes PLC abren el potencial de la red eléctrica al servicio de intercomunicación entre ordenadores.
Este sistema utiliza las líneas de energía eléctrica convencionales para transmitir señales de radio para propósitos de comunicacion.la tecnología PLCaprovocha la red eléctrica para convertirla en una línea digital de alta velocidad de transmisión de datos permitiendo, entre otras cosas el acceso a internet mediante banda ancha.




PROPONER TOPOLOGIA DE RED DEL AREA LOCAL

Una red informática está compuesta por equipos que están conectados entre sí mediante líneas de comunicación y elementos de hardware.
La configuración física, es decir la configuración espacial de la red, se denomina Topología física. Los diferentes tipos de esta topología son:

1.-Topología en BUS

En la topología de bus, todos los equipos están conectados a la misma línea de transmisión mediante un cable, generalmente coaxial.
La ventaja de esta topología es su facilidad de implementación y funcionamiento. Sin embargo, esta topología es altamente vulnerable, ya que si una de las conexiones es defectuosa, esto afecta a toda la red.

2.-Topología en Estrella

En la topología de estrella, los equipos de la red están conectados a un hardware denominado concentrador.
A diferencia de las redes bus, las redes de estrella son mucho menos vulnerables, ya que se puede eliminar una de las conexiones fácilmente desconectándola del concentrador sin paralizar el resto de la red. El punto crítico en esta red es el concentrador, ya que la ausencia del mismo imposibilita la comunicación entre los equipos de la red.



3.-Topología en Anillo
En una red con topología en anillo, los equipos se comunican por turnos y se crea un bucle de equipos en el cual cada uno "tiene su turno para hablar" después del otro. En realidad, las redes con topología en anillo no están conectadas en bucles. Están conectadas a un distribuidor (denominado MAU, Unidad de acceso multiestación) que administra la comunicación entre los equipos conectados a él, lo que le da tiempo a cada uno para "hablar".




4.-Topología en Árbol

Los nodos de esta topología se encuentran conectados a un concentrador central que controla el tráfico de la red. Sin embargo, no todos los dispositivos se conectan directamente al concentrador central. La mayoría de los dispositivos se conectan a un concentrador secundario que, a su vez, se conecta al concentrador central.

El controlador central del árbol es un concentrador activo, contiene un repetidor, para retransmitir las señales, de esta forma amplifica su potencia e incrementa la distancia a la que puede viajar la señal. Los concentradores secundarios pueden ser activos o pasivos. Un concentrador pasivo proporciona solamente una conexión fisica entre los dispositivos conectados.




5.-Topología en Malla

En una topología en malla, cada dispositivo tiene un enlace punto a punto y dedicado con cualquier otro dispositivo. El término dedicado significa que el enlace conduce el tráfico únicamente entre los dos dispositivos que conecta.
Ventajas de la topología de malla:


*Garantiza que cada conexión sólo debe transportar la carga de datos propia de los dispositivos conectados.
*Es robusta, Si un enlace falla, no inhabilita todo el sistema.
*Es la privada y segura, Cuando un mensaje viaja a través de una línea dedicada, solamente lo ve el receptor adecuado.


6.-Topología HIBRIDA

Las Redes híbridas combinan una o más topologías en una misma red, es decir dos o más topologías utilizadas juntas.
La Topología lógica, a diferencia de la topología física, es la manera en que los datos viajan por las líneas de comunicación. Las topologías lógicas más comunes son:




TOPOLOGIA DE ETHERNET

Ethernet (también conocido como estándar IEEE 802.3) es un estándar de transmisión de datos para redes de área local que se basa en el siguiente principio:


“Todos los equipos en una red Ethernet están conectados a la misma línea de comunicación compuesta por cables cilíndricos.”




La comunicación se lleva a cabo por medio de la utilización un protocolo denominado CSMA/CD que significa que es un protocolo de acceso múltiple que monitorea la portadora.

Esta comunicación se realiza de manera simple:

*Cada equipo verifica que no haya ninguna comunicación en la línea antes de transmitir.
*Si dos equipos transmiten simultáneamente, entonces se produce una colisión (o sea, varias tramas de datos se ubican en la línea al mismo tiempo).

Las principales características de las topologías Ethernet:

1. Rapidez y velocidad de traspaso fiable: 10 Mbps.
2. Fácil compatibilidad: más componentes de Red para adaptarse a los estándares Ethernet.
3. Máxima flexibilidad (dos topologías-bus o estrella) y cinco tipos de cable (estándar o coaxial delgado; par trenzado sin blindaje; FOIRL o fibra óptica 10BASE-FL).


Topología TOKEN RING

El método de acceso es conocido como token passing o Paso de testigo y consiste en que una sola estación puede transmitir en determinado instante y es precisamente la que posea en ese momento el Token, este es el encargado de asignar los permisos para transmitir los datos.
La información que viaja en el recorre una sola dirección a lo largo de la red. No requiere de enrutamiento, ya que cada paquete es pasado a su vecino y así consecutivamente, por ejemplo, tenemos tres estaciones de trabajo A, B, C, etc., si una estación A transmite un mensaje, este pasa a B, independientemente de si va dirigido a la B o a otra, luego por C ,etc.
A pesar de que inicialmente tuvo mucho éxito, finalmente es desplazada por Ethernet como se manifestó a favor de la tecnología y la arquitectura de redes de área local (LAN).





TOPOLOGÍA EN FDDI

La tecnología LAN FDDI (interfaz de datos distribuida por fibra) es una tecnología de acceso a redes a través líneas de fibra óptica. De hecho, son dos anillos: el anillo "primario" y el anillo "secundario", que permite capturar los errores del primero. La FDDI es una red en anillo que posee detección y corrección de errores.
La topología de la FDDI se parece bastante a la de una red en anillo con una pequeña diferencia: un equipo que forma parte de una red FDDI también puede conectarse al hub desde una segunda red. En este caso, obtendremos un sistema biconectado